Package index
-
AS
- Ankylosing Spondylitis.
-
BinaryExactCI()
- Exact Confidence interval for Binary Proportion
-
RBesT
RBesT-package
- R Bayesian Evidence Synthesis Tools
-
automixfit()
- Automatic Fitting of Mixtures of Conjugate Distributions to a Sample
-
colitis
- Ulcerative Colitis.
-
crohn
- Crohn's disease.
-
decision1S()
oc1Sdecision()
- Decision Function for 1 Sample Designs
-
decision1S_boundary()
- Decision Boundary for 1 Sample Designs
-
decision2S()
oc2Sdecision()
- Decision Function for 2 Sample Designs
-
decision2S_boundary()
- Decision Boundary for 2 Sample Designs
-
ess()
- Effective Sample Size for a Conjugate Prior
-
forest_plot()
- Forest Plot
-
gMAP()
print(<gMAP>)
fitted(<gMAP>)
coef(<gMAP>)
as.matrix(<gMAP>)
summary(<gMAP>)
- Meta-Analytic-Predictive Analysis for Generalized Linear Models
-
likelihood()
`likelihood<-`()
- Read and Set Likelihood to the Corresponding Conjugate Prior
-
logit()
inv_logit()
- Logit (log-odds) and inverse-logit function.
-
dmix()
pmix()
qmix()
rmix()
`[[`(<mix>)
- Mixture Distributions
-
mixbeta()
ms2beta()
mn2beta()
print(<betaMix>)
print(<betaBinomialMix>)
summary(<betaMix>)
summary(<betaBinomialMix>)
- Beta Mixture Density
-
mixcombine()
- Combine Mixture Distributions
-
dmixdiff()
pmixdiff()
qmixdiff()
rmixdiff()
- Difference of mixture distributions
-
mixfit()
- Fit of Mixture Densities to Samples
-
mixgamma()
ms2gamma()
mn2gamma()
print(<gammaMix>)
print(<gammaPoissonMix>)
print(<gammaExpMix>)
summary(<gammaMix>)
summary(<gammaPoissonMix>)
- The Gamma Mixture Distribution
-
mixmvnorm()
print(<mvnormMix>)
summary(<mvnormMix>)
sigma(<mvnormMix>)
- Multivariate Normal Mixture Density
-
mixnorm()
mn2norm()
print(<normMix>)
summary(<normMix>)
sigma(<normMix>)
`sigma<-`()
- Normal Mixture Density
-
plot(<mix>)
plot(<mvnormMix>)
- Plot mixture distributions
-
mixstanvar()
- Mixture distributions as
brms
priors
-
oc1S()
- Operating Characteristics for 1 Sample Design
-
oc2S()
- Operating Characteristics for 2 Sample Design
-
plot(<EM>)
- Diagnostic plots for EM fits
-
plot(<gMAP>)
- Diagnostic plots for gMAP analyses
-
pos1S()
- Probability of Success for a 1 Sample Design
-
pos2S()
- Probability of Success for 2 Sample Design
-
postmix()
- Conjugate Posterior Analysis
-
preddist()
- Predictive Distributions for Mixture Distributions
-
predict(<gMAP>)
print(<gMAPpred>)
summary(<gMAPpred>)
as.matrix(<gMAPpred>)
- Predictions from gMAP analyses
-
robustify()
- Robustify Mixture Priors
-
transplant
- Transplant.