Package index
-
AS - Ankylosing Spondylitis.
-
BinaryExactCI() - Exact Confidence interval for Binary Proportion
-
RBesTRBesT-package - R Bayesian Evidence Synthesis Tools
-
automixfit() - Automatic Fitting of Mixtures of Conjugate Distributions to a Sample
-
colitis - Ulcerative Colitis.
-
crohn - Crohn's disease.
-
decision1S()oc1Sdecision() - Decision Function for 1 Sample Designs
-
decision1S_boundary() - Decision Boundary for 1 Sample Designs
-
decision2S()oc2Sdecision() - Decision Function for 2 Sample Designs
-
decision2S_boundary() - Decision Boundary for 2 Sample Designs
-
ess() - Effective Sample Size for a Conjugate Prior
-
forest_plot() - Forest Plot
-
gMAP()print(<gMAP>)fitted(<gMAP>)coef(<gMAP>)as.matrix(<gMAP>)summary(<gMAP>) - Meta-Analytic-Predictive Analysis for Generalized Linear Models
-
likelihood()`likelihood<-`() - Read and Set Likelihood to the Corresponding Conjugate Prior
-
logit()inv_logit() - Logit (log-odds) and inverse-logit function.
-
dmix()pmix()qmix()rmix()`[[`(<mix>) - Mixture Distributions
-
mixbeta()ms2beta()mn2beta()print(<betaMix>)print(<betaBinomialMix>)summary(<betaMix>)summary(<betaBinomialMix>) - Beta Mixture Density
-
mixcombine() - Combine Mixture Distributions
-
dmixdiff()pmixdiff()qmixdiff()rmixdiff() - Difference of mixture distributions
-
mixfit() - Fit of Mixture Densities to Samples
-
mixgamma()ms2gamma()mn2gamma()print(<gammaMix>)print(<gammaPoissonMix>)print(<gammaExpMix>)summary(<gammaMix>)summary(<gammaPoissonMix>) - The Gamma Mixture Distribution
-
write_mix_json()read_mix_json()experimental - Write and Read a Mixture Object with JSON
-
mixmvnorm()msr2mvnorm()print(<mvnormMix>)summary(<mvnormMix>)sigma(<mvnormMix>) - Multivariate Normal Mixture Density
-
mixnorm()mn2norm()print(<normMix>)summary(<normMix>)sigma(<normMix>)`sigma<-`() - Normal Mixture Density
-
plot(<mix>)plot(<mvnormMix>) - Plot mixture distributions
-
mixstanvar() - Mixture distributions as
brmspriors
-
oc1S() - Operating Characteristics for 1 Sample Design
-
oc2S() - Operating Characteristics for 2 Sample Design
-
plot(<EM>) - Diagnostic plots for EM fits
-
plot(<gMAP>) - Diagnostic plots for gMAP analyses
-
pos1S() - Probability of Success for a 1 Sample Design
-
pos2S() - Probability of Success for 2 Sample Design
-
postmix() - Conjugate Posterior Analysis
-
preddist() - Predictive Distributions for Mixture Distributions
-
predict(<gMAP>)print(<gMAPpred>)summary(<gMAPpred>)as.matrix(<gMAPpred>) - Predictions from gMAP analyses
-
robustify() - Robustify Mixture Priors
-
transplant - Transplant.