Skip to contents

Predictive distribution for mixture of conjugate distributions (beta, normal, gamma).

Usage

preddist(mix, ...)

# S3 method for class 'betaMix'
preddist(mix, n = 1, ...)

# S3 method for class 'normMix'
preddist(mix, n = 1, sigma, ...)

# S3 method for class 'gammaMix'
preddist(mix, n = 1, ...)

# S3 method for class 'mvnormMix'
preddist(mix, ...)

Arguments

mix

mixture distribution

...

includes arguments which depend on the specific prior-likelihood pair, see description below.

n

predictive sample size, set by default to 1

sigma

The fixed reference scale of a normal mixture. If left unspecified, the default reference scale of the mixture is assumed.

Value

The function returns for a normal, beta or gamma mixture the matching predictive distribution for \(y_n\).

Details

Given a mixture density (either a posterior or a prior)

$$p(\theta,\mathbf{w},\mathbf{a},\mathbf{b})$$

and a data likelihood of

$$y|\theta \sim f(y|\theta),$$

the predictive distribution of a one-dimensional summary \(y_n\) of $n$ future observations is distributed as

$$y_n \sim \int p(\theta,\mathbf{w},\mathbf{a},\mathbf{b}) \, f(y_n|\theta) \, d\theta .$$

This distribution is the marginal distribution of the data under the mixture density. For binary and Poisson data \(y_n = \sum_{i=1}^n y_i\) is the sum over future events. For normal data, it is the mean\(\bar{y}_n = 1/n \sum_{i=1}^n y_i\).

Methods (by class)

  • preddist(betaMix): Obtain the matching predictive distribution for a beta distribution, the BetaBinomial.

  • preddist(normMix): Obtain the matching predictive distribution for a Normal with constant standard deviation. Note that the reference scale of the returned Normal mixture is meaningless as the individual components are updated appropriatley.

  • preddist(gammaMix): Obtain the matching predictive distribution for a Gamma. Only Poisson likelihoods are supported.

  • preddist(mvnormMix): Multivariate normal mixtures predictive densities are not (yet) supported.

Supported Conjugate Prior-Likelihood Pairs

Prior/PosteriorLikelihoodPredictiveSummaries
BetaBinomialBeta-Binomialn, r
NormalNormal (fixed \(\sigma\))Normaln, m, se
GammaPoissonGamma-Poissonn, m
GammaExponentialGamma-Exp (not supported)n, m

Examples


# Example 1: predictive distribution from uniform prior.
bm <- mixbeta(c(1, 1, 1))
bmPred <- preddist(bm, n = 10)
# predictive proabilities and cumulative predictive probabilities
x <- 0:10
d <- dmix(bmPred, x)
names(d) <- x
barplot(d)

cd <- pmix(bmPred, x)
names(cd) <- x
barplot(cd)

# median
mdn <- qmix(bmPred, 0.5)
mdn
#> [1] 5

# Example 2: 2-comp Beta mixture

bm <- mixbeta(inf = c(0.8, 15, 50), rob = c(0.2, 1, 1))
plot(bm)

bmPred <- preddist(bm, n = 10)
plot(bmPred)

mdn <- qmix(bmPred, 0.5)
mdn
#> [1] 2
d <- dmix(bmPred, x = 0:10)
# \donttest{
n.sim <- 100000
r <- rmix(bmPred, n.sim)
d
#>  [1] 0.08814590 0.19605661 0.23899190 0.19379686 0.11696528 0.05913205
#>  [7] 0.03082078 0.02104347 0.01863583 0.01822732 0.01818400
table(r) / n.sim
#> r
#>       0       1       2       3       4       5       6       7       8       9 
#> 0.08968 0.19746 0.23763 0.19322 0.11681 0.05847 0.03068 0.02091 0.01858 0.01803 
#>      10 
#> 0.01853 
# }

# Example 3: 3-comp Normal mixture

m3 <- mixnorm(c(0.50, -0.2, 0.1), c(0.25, 0, 0.2), c(0.25, 0, 0.5), sigma = 10)
print(m3)
#> Univariate normal mixture
#> Reference scale: 10
#> Mixture Components:
#>   comp1 comp2 comp3
#> w  0.50  0.25  0.25
#> m -0.20  0.00  0.00
#> s  0.10  0.20  0.50
summary(m3)
#>       mean         sd       2.5%      50.0%      97.5% 
#> -0.1000000  0.2958040 -0.6426984 -0.1490997  0.6426789 
plot(m3)

predm3 <- preddist(m3, n = 2)
#> Using default mixture reference scale 10
plot(predm3)

print(predm3)
#> Univariate normal mixture
#> Reference scale: 10
#> Mixture Components:
#>   comp1     comp2     comp3    
#> w  0.500000  0.250000  0.250000
#> m -0.200000  0.000000  0.000000
#> s  7.071775  7.073896  7.088723
summary(predm3)
#>        mean          sd        2.5%       50.0%       97.5% 
#>  -0.1000000   7.0772523 -13.9709762  -0.1000673  13.7713589