torchsurv.stats.ipcw#
Functions
|
Calculate the inverse probability censoring weights (IPCW). |
- torchsurv.stats.ipcw.get_ipcw(event: tensor, time: tensor, new_time: tensor | None = None, checks: bool = True) Tensor [source]#
Calculate the inverse probability censoring weights (IPCW).
- Parameters:
event (torch.Tensor, boolean) – Event indicator of size n_samples (= True if event occured).
time (torch.Tensor, float) – Time-to-event or censoring of size n_samples.
new_time (torch.Tensor, float, optional) – New time at which to evaluate the IPCW. Defaults to
time
.checks (bool) – Whether to perform input format checks. Enabling checks can help catch potential issues in the input data. Defaults to True.
- Returns:
IPCW evaluated at
new_time
.- Return type:
torch.Tensor
Examples
>>> _ = torch.manual_seed(42) >>> n = 5 >>> event = torch.randint(low=0, high=2, size=(n,)).bool() >>> time = torch.randint(low=1, high=100, size=(n,)).float() >>> new_time = torch.randint(low=1, high=100, size=(n*2,)) >>> get_ipcw(event, time) # ipcw evaluated at time tensor([1.8750, 1.2500, 3.7500, 0.0000, 1.2500]) >>> get_ipcw(event, time, new_time) # ipcw evaluated at new_time tensor([1.8750, 1.8750, 3.7500, 3.7500, 0.0000, 1.2500, 0.0000, 1.2500, 1.2500, 1.2500])
Note
The inverse probability of censoring weight at time \(t\) is defined by
\[\omega(t) = 1 / \hat{D}(t),\]where \(\hat{D}(t)\) is the Kaplan-Meier estimate of the censoring distribution, \(P(D>t)\).