torchsurv.loss.weibull#
Functions
|
Cumulative hazard for the Weibull Accelerated Time Failure (AFT) survival model. |
|
Log hazard of the Weibull Accelerated Time Failure (AFT) survival model. |
|
Negative of the log likelihood for the Weibull Accelerated Time Failure (AFT) survival model. |
|
Survival function for the Weibull Accelerated Time Failure (AFT) survival model. |
- torchsurv.loss.weibull.neg_log_likelihood(log_params: Tensor, event: Tensor, time: Tensor, reduction: str = 'mean', checks: bool = True) Tensor [source]#
Negative of the log likelihood for the Weibull Accelerated Time Failure (AFT) survival model.
- Parameters:
log_params (torch.Tensor, float) – Parameters of the Weibull distribution of shape = (n_samples, 1) or (n_samples, 2). The first column corresponds to the log scale parameter. The second column corresponds to the log shape parameter. If the log shape parameter is missing, it is imputed with 0.
event (torch.Tensor, bool) – Event indicator of length n_samples (= True if event occured).
time (torch.Tensor, float) – Time-to-event or censoring of length n_samples.
reduction (str) – Method to reduce losses. Defaults to “mean”. Must be one of the following: “sum”, “mean”.
checks (bool) – Whether to perform input format checks. Enabling checks can help catch potential issues in the input data. Defaults to True.
- Returns:
Negative of the log likelihood.
- Return type:
(torch.Tensor, float)
Note
For each subject \(i \in \{1, \cdots, N\}\), denote \(X_i\) as the survival time and \(D_i\) as the censoring time. Survival data consist of the event indicator, \(\delta_i=1(X_i\leq D_i)\) (argument
event
) and the time-to-event or censoring, \(T_i = \min(\{ X_i,D_i \})\) (argumenttime
).The log hazard function for the Weibull AFT survival model [Car03] of subject \(i\) at time \(t\) has the form:
\[\log h_i(t) = \log{\rho_i} - \log{\lambda_i} + (\rho_i -1) \left( \log{t} - \log{\lambda_i}\right)\]where \(\log{\lambda_i}\) is the log scale parameter (first column of argument
log_params
) and \(\log{\rho_i}\) is the log shape parameter (second column of argumentlog_params
). The cumulative hazard for the Weibull survival model of subject \(i\) at time \(t\) has the form:\[H_i(t) = \left(\frac{t}{\lambda_i}\right)^{\rho_i}\]The survival function for the Weibull survival model of subject \(i\) at time \(t\) has the form:
\[S_i(t) = 1 - F(t | \lambda_i, \rho_i)\]where \(F(t | \lambda, \rho)\) is the cumulative distribution function (CDF) of the Weibull distribution given scale parameter \(\lambda\) and shape parameter \(\rho\).
The log likelihood of the Weibull survival model is
\[ll = \sum_{i: \delta_i = 1} \log h_i(T_i) - \sum_{i = 1}^N H_i(T_i)\]Examples
>>> _ = torch.manual_seed(42) >>> n = 4 >>> log_params = torch.randn((n, 2)) >>> event = torch.randint(low=0, high=2, size=(n,), dtype=torch.bool) >>> time = torch.randint(low=1, high=100, size=(n,)) >>> neg_log_likelihood(log_params, event, time) # Default: mean of log likelihoods across subject tensor(47.5035) >>> neg_log_likelihood(log_params, event, time, reduction = 'sum') # Sum of log likelihoods across subject tensor(190.0141) >>> neg_log_likelihood(torch.randn((n, 1)), event, time) # Missing shape: exponential decrease tensor(66.7203)
References
[Car03]Kevin J. Carroll. On the use and utility of the weibull model in the analysis of survival data. Controlled Clinical Trials, 24(6):682–701, December 2003.
- torchsurv.loss.weibull.survival_function(log_params: Tensor, time: Tensor, all_times: bool = True) Tensor [source]#
Survival function for the Weibull Accelerated Time Failure (AFT) survival model.
- Parameters:
log_params (torch.Tensor, float) – Parameters of the Weibull distribution of shape = (n_samples, 1) or (n_samples, 2). The first column corresponds to the log scale parameter. The second column corresponds to the log shape parameter. If the log shape parameter is missing, it is imputed with 0.
time (torch.Tensor, float) – Time at which to evaluate the survival function. Should be of length n_samples to evaluate the survival function at observed time-to-event or censoring, or of length one to evaluate the survival function at a new time.
all_times (bool) – If True, subject-specific survival function is evaluated at all
time
(used for evaluation metrics). If False, subject-specific survival function is evaluated at respectivetime
. Defaults is True. Ignored iftime
is of length one.
- Returns:
Subject-specific survival function evaluated at
time
.- Return type:
(torch.Tensor, float)
Examples
>>> _ = torch.manual_seed(42) >>> time = torch.randint(low=1, high=100, size=(4,)) >>> log_params = torch.randn((4, 2)) >>> survival_function(log_params, time, all_times = False) # Survival at respective time tensor([0.0002, 0.0000, 0.0299, 0.0000]) >>> survival_function(log_params, time, all_times = True) # Default. Survival at all observed time tensor([[1.7941e-04, 0.0000e+00, 0.0000e+00, 0.0000e+00], [2.8610e-06, 0.0000e+00, 0.0000e+00, 0.0000e+00], [4.1870e-01, 3.1040e-02, 2.9881e-02, 6.8224e-02], [9.5576e-04, 0.0000e+00, 0.0000e+00, 0.0000e+00]]) >>> survival_function(log_params, time=torch.tensor(10.0)) # Survival at one new time (e.g., 10 years) tensor([1.3709e-06, 5.9605e-08, 3.4954e-01, 1.5438e-05]) >>> for t in torch.tensor([100.0, 150.0]): survival_function(log_params, time=t) # Subject-specific survival at multiple new times tensor([0.0000, 0.0000, 0.0288, 0.0000]) tensor([0.0000, 0.0000, 0.0123, 0.0000])
- torchsurv.loss.weibull.log_hazard(log_params: Tensor, time: Tensor, all_times: bool = True) Tensor [source]#
Log hazard of the Weibull Accelerated Time Failure (AFT) survival model.
- Parameters:
log_params (torch.Tensor, float) – Parameters of the Weibull distribution of shape = (n_samples, 1) or (n_samples, 2). The first column corresponds to the log scale parameter. The second column corresponds to the log shape parameter. If the log shape parameter is missing, it is imputed with 0.
time (torch.Tensor, float) – Time at which to evaluate the log hazard. Should be of length n_samples to evaluate the log hazard at observed time-to-event or censoring, or of length one to evaluate the log hazard at a new time.
all_times (bool) – If True, subject-specific log hazard is evaluated at all
time
(used for evaluation metrics). If False, subject-specific log hazard is evaluated at respectivetime
. Defaults is True. Ignored iftime
is of length one.
- Returns:
Subject-specific log hazard evaluated at
time
.- Return type:
(torch.Tensor, float)
Examples
>>> _ = torch.manual_seed(42) >>> time = torch.randint(low=1, high=100, size=(4,)) >>> log_params = torch.randn((4, 2)) >>> log_hazard(log_params, time, all_times = False) # Log hazard at respective time tensor([ 0.4392, -0.0303, -3.9672, 0.9140]) >>> log_hazard(log_params, time, all_times = True) # Default. Log hazard at all time tensor([[ 0.4392, 1.1174, 1.1227, 0.9913], [ 0.4148, -0.0303, -0.0338, 0.0525], [-2.7225, -3.9575, -3.9672, -3.7279], [ 0.2606, 1.0632, 1.0695, 0.9140]]) >>> log_hazard(log_params, time=torch.tensor(10.0)) # Log hazard at one new time (e.g., 10 years) tensor([ 0.5316, 0.3542, -2.8907, 0.3699]) >>> for t in torch.tensor([100.0, 150.0]): log_hazard(log_params, time=t) # Subject-specific log hazard at multiple new times tensor([ 1.1280, -0.0372, -3.9767, 1.0757]) tensor([ 1.2330, -0.1062, -4.1680, 1.1999]) >>> log_params *= 1e2 # Increase scale >>> log_hazard(log_params, time, all_times = False) # Check for Torch.Inf values tensor([-1.0000e+10, -2.3197e+01, -6.8385e+01, -1.0000e+10])
- torchsurv.loss.weibull.cumulative_hazard(log_params: Tensor, time: Tensor, all_times: bool = True) Tensor [source]#
Cumulative hazard for the Weibull Accelerated Time Failure (AFT) survival model.
- Parameters:
log_params (torch.Tensor, float) – Parameters of the Weibull distribution of shape = (n_samples, 1) or (n_samples, 2). The first column corresponds to the log scale parameter. The second column corresponds to the log shape parameter. If the log shape parameter is missing, it is imputed with 0.
time (torch.Tensor, float) – Time-to-event or censoring of length n_samples.
all_times (bool) – If True, subject-specific cumulative hazard is evaluated at all
time
(used for evaluation metrics). If False, subject-specific cumulative hazard is evaluated at respectivetime
. Defaults is True.
- Returns:
Subject-specific cumulative hazard evaluated at
time
.- Return type:
(torch.Tensor, float)
Examples
>>> _ = torch.manual_seed(42) >>> time = torch.randint(low=1, high=100, size=(4,)) >>> log_params = torch.randn((4, 2)) >>> cumulative_hazard(log_params, time, all_times=False) # Cumulative hazard at respective time tensor([ 8.6257, 112.2115, 3.5105, 112.6339]) >>> cumulative_hazard(log_params, time, all_times=True) # Default. Cumulative hazard at all time tensor([[ 8.6257, 233.0865, 239.2167, 126.2805], [ 12.7698, 112.2115, 114.1484, 74.9134], [ 0.8706, 3.4725, 3.5105, 2.6850], [ 6.9530, 212.7592, 218.5687, 112.6339]])