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Learning Goals

After this course, you should:

Be familiar with brms syntax and workflow
Recognize its versatility for statistical modelling in drug
development
Have hands-on experience with the package from two guided
exercises

and of course:

Feel empowered to use brms the future!
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Housekeeping

Q&A: you may raise your hand at any time, or hold for Q&A
sessions at the end of each section
Laptop charging: we recommend conserving battery by
keeping your laptop powered down except during the hands-on
exercises
For hands-on exercises, we will use Posit Cloud: link to join
our space

• More instructions to come when we begin the first exercise
Online case study library: http://opensource.nibr.com/bamdd
Course materials:
https://github.com/Novartis/bamdd/tree/main/workshops/jsm2024

3 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 

https://posit.cloud/spaces/513727/join?access_code=yNGgqsQKAw3UXk6TVZ7z0LPpMNG_IkMpZgNrb6_m
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Bayesian inference basics
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Review of Bayesian Inference
Probability distributions

Data Y, parameter(s) θ
1. Sampling distribution (statistical model, “likelihood”)                    

The distribution of Y conditional on θ
p( Y | θ)

2. Prior distribution of θ expresses knowledge about θ prior to 
observing data Y
p( θ )

3. Posterior distribution of θ expresses knowledge about θ after 
observing Y
p(θ | Y ) 

Bayes theorem:  p(θ | Y ) ∝ p( Y | θ) p(θ )
Posterior ∝ Likelihood × Prior
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Review of Bayesian Inference
Normal data

Likelihood p(data|θ)
Prior p(θ)
Posterior ∝ Likelihood × Prior p(θ|data) ∝ p(data|θ) × p(θ)

Example: Normal data with known σ
Likelihood p(𝑌𝑌|µ) = N(µ, σ2/n)
Prior p(µ)    = N(µ0, σ2/n0)
Posterior ∝ Likelihood × Prior p(µ|𝑌𝑌) = N( {n0µ0+n𝑌𝑌}/(n0+n), σ2/(n0+n) )

As if  n0 additional patients 
with average response µ0
had been included
n0 = prior sample size
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Review of Bayesian Inference
Binary data

Likelihood p(data|θ)
Prior p(θ)
Posterior ∝ Likelihood × Prior p(θ|data) ∝ p(data|θ) × p(θ)

Example: Binary data 
Likelihood p(Y|π) = Binomial(π, n)
Prior p(π)     = Beta(a, b)
Posterior ∝ Likelihood × Prior p(π |Y) = Beta(a + Y, b + {n-Y})

As if  n0=a+b additional 
patients with response 
rate a/n0 had been 
included
n0 = prior sample size

π
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Review of Bayesian Inference
Bayesian inference vs classical inference

Y=2.5, n=25   Normal distribution, σ=5 known, vague prior (n0=0.001)

one-sided 97.5% CI
(0.54,∞)

p(µ>0.54 | Y )=97.5%

two-sided 95% CI
(0.54,4.46)

p(0.54<µ<4.46 | Y )=95%
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Data Y, parameter(s) θ , new data Y* (planned)
Predictive distribution of Y* expresses knowledge about Y* after 
observing Y, but before observing new data Y* 

p( Y* |  Y )  =  ∫   p( Y* | θ ) p( θ | Y)  d θ

Example – clinical trial in 50 cancer patients
• All patients receive the test treatment, outcome=response yes/no
• Test treatment will be further investigated if at least 30/50 respond
• Y=16 of the first 30 patients responded. What is the probability that 

at least 14 of the next 20 patients respond?
Prior response rate Beta(1,1)
Posterior Beta(17,15)
Predictive distribution p(Y* | Y=16)
p(Y* ≥ 14 | Y=16) = 16%    

Review of Bayesian Inference
Prediction

Y*
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Bayesian inference on unknowns  Y* , θ* , θ1, ... , θJ , ϕ

Review of Bayesian Inference
Evidence synthesis – general statistical model

J sources of historical data
Yj | θj ~  Fj(θj)        

p(Yj | θj )

Y1 Y2 YJ
...

θ1

θJ
θ2

Model to link parameters (hyper-parameter ϕ)
(θ*, θ1, ... , θJ ) | ϕ ~  G(ϕ)          

p( θ*, θ1, ... , θJ | ϕ )

θ*

Y* New source of data (plan)
Y* | θ* ~  F*(θ*)  

p(Y* | θ* )
ϕ
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Review of Bayesian Inference
Bayesian computation

Many parameters θ = (θ 1,..., θp)       (p may be >> 100)
Posterior distribution:
p(θ | Y )  =  p( Y | θ ) p(θ) / ∫ p( Y | θ ) p(θ ) d θ 

Marginal posterior distribution:
p(θ 1 | Y ) = ∫ p(θ | Y ) d θ 2 ... d θ p

Predictive distribution:
p( Y* | Y ) = ∫ p(Y∗ | θ) p(θ | Y ) d θ

Requires high-dimensional integration
Analytical evaluation for simple cases only
Numerical integration for low dimensions only
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Review of Bayesian Inference
Bayesian computation

Bayesian data analysis revolutionized by Markov Chain 
Monte Carlo - MCMC (Gelfand and Smith,1990) 

Generate a very large sample from the posterior distribution, without 
need to know ∫ p( Y | θ) p(θ) d θ

θ(1), ... , θ (M)    (e.g. M=10‘000)         θ(k)  = (θ 1(k), ... , θ p(k)) 

Posterior distribution ≈ Empirical distribution of sample
e.g.   p(θ 1 | Y ) ≈ empirical distribution of θ 1(1), ... , θ 1(M) 

p( g(θ) | Y ≈ empirical distribution of g(θ(1) ), ... , g(θ(M) )

Software
• WinBUGS, JAGS, Stan, brms ... Nimble, Turing, PyMC3, etc.
• SAS  
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Bayesian Statistics
Summary

Publications

Expert 
Knowledge

Historical 
Data

Contextual
Evidence

Observed
Data

Updated 
Evidence

Predictions
Decisions+ = ⇒

“Bayes” (probability calculus)  +

+ = ⇒

 Bayesian Statistics
 All uncertainty is expressed probabilistically
 Critical input: “Likelihood” (Statistical Model) and “Prior” 
 Bayes Theorem: Posterior ∝ Likelihood × Prior

15 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



A brms modelling workflow
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Bayesian Software: brms

Specify models via extended R formula syntax
Internally write Stan code that is readable yet fast
Provide an easy interface for defining priors
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Some Highlights of brms

Flexible hierarchical (random effects) modeling
Both built-in and user-defined likelihoods
Explicit and implicit non-linear modeling
Distributional regression
Within-chain parallelization
Posterior and prior predictions
Highly dense feature matrix
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Model specification in brms: formula

varying intercept model for a single grouping factor:
formula = y ~ 1 + x + (1 | g)

Varying intercept-slope model for a single grouping factor:
formula = y ~ 1 + x + (1 + x | g)

Advanced non-linear terms such as Gaussian processes:
formula = y ~ 1 + gp(x) + (1 + x | g)
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Model specification in brms: formula

Linear formulas for multiple distributional parameters (e.g., predict
mean and overdispersion of negative binomial):
formula = bf(
y ~ 1 + x + (1 | g) + ...,
par2 ~ 1 + x + (1 | g) + ...,
par3 ~ 1 + x + (1 | g) + ...,

)

Non-linear formula for a single distributional parameter:
formula = bf(
y ~ fun(x, nlpar1, nlpar2),
nlpar1 ~ 1 + x + (1 | g) + ...,
nlpar2 ~ 1 + (1 | g) + ...,
nl = TRUE

)
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Model specification in brms: family (likelihood)

General structure:
family = brmsfamily(
family = "<family>", link = "<link>",
more_link_arguments

)

Gaussian likelihood (default):
family = brmsfamily(family = "gaussian", link = "identity",

link_sigma = "log")

Poisson likelihood:
family = brmsfamily(family = "poisson", link = "log")

See also vignette("brms_families") for details on the families.
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Global brms Settings

Some global options that are useful to set for your brms analysis
options(

# how many processor cores would you like to use?
mc.cores = 4,
# how would you like to access Stan?
brms.backend = "cmdstanr",
# cache model binaries
cmdstanr_write_stan_file_dir=here::here("_brms-cache"),
# no need to normalize likelihoods
brms.normalize = FALSE,
# when you are storing your model to file,
# how shall it be updated?
brms.file_refit = "on_change"
# alternatives: "never", "always"
# use "never" for production

)
# create cache directory if not yet available
dir.create(here::here("_brms-cache"), FALSE)

Assign at least 8 GB of RAM to ensure that everything works smoothly
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Case study 1: historical control data
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Case study background

Suppose we are planning a Phase-II study in ankylosing
spondylitis
The study will be randomized, comparing a test treatment
with placebo
Each patient will be followed, and recorded as a responder or
non-responder
Binary endpoint: percentage of responders
Goal: minimize number of patients exposed to placebo, using
data from past studies about placebo response rates
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Historical data

Historical data for placebo:

study n r region
Study 1 107 23 asia
Study 2 44 12 asia
Study 3 51 19 north_america
Study 4 39 9 north_america
Study 5 139 39 north_america
Study 6 20 6 europe
Study 7 78 9 north_america
Study 8 35 10 europe
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Meta-Analytic-Predictive (MAP) approach
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MAP priors
Approach for augmenting the internal control arm: derive a
Meta-Analytic-Predictive (MAP) prior, and use it in the
analysis of the Phase-II study data
The MAP prior is

𝑝(𝜃new | 𝑥hist) = ∫ 𝑝(𝜃new | 𝜃hist)𝑝(𝜃hist|𝑥hist) 𝑑𝜃hist,

𝜃new is the probability of responding to placebo in the new
study
𝑥hist is the historical data (responder count), and the
posterior distribution

𝑝(𝜃hist | 𝑥hist) ∝ 𝑝(𝑥hist | 𝜃hist) ⋅ 𝑝(𝜃hist)

is based on Bayesian random-effects meta-analysis
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Deriving MAP Priors: Model Specification

The random-effects meta-analysis to derive the MAP prior can be
specified as:
form_AS <- bf(r | trials(n) ~ 1 + (1|study),

family = binomial("logit"))

get_prior(form_AS, data = AS)

bprior_AS <- prior(normal(0, 2), class = "Intercept") +
prior(normal(0, 1), class = "sd", coef = "Intercept",

group = "study")

fit_AS <- brm(
form_AS, data = AS, prior = bprior_AS,
seed = 2454

)
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Deriving MAP Priors: Summary

summary(fit_AS)

Family: binomial
Links: mu = logit

Formula: r | trials(n) ~ 1 + (1 | study)
Data: AS (Number of observations: 8)

Group-Level Effects:
~study (Number of levels: 8)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.38 0.21 0.04 0.86 1.01 1074 1195

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -1.10 0.19 -1.47 -0.70 1.00 1482 1142
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Predicting the placebo response rate in a new
study

AS_new <- data.frame(study = "new_study", n = 1)
pe <- posterior_epred(
fit_AS, newdata = AS_new, allow_new_levels = TRUE,
sample_new_levels = "gaussian"

)
posterior_summary(pe)

Estimate Est.Error Q2.5 Q97.5
[1,] 0.2582027 0.09086392 0.1075108 0.4811092
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Approximation with a finite mixture
pe_mix <- RBesT::automixfit(pe[, 1], type = "beta")
plot(pe_mix)$mix

31 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



Deriving MAP Priors: Varying Regions Model

form_AS_region <- bf(r | trials(n) ~ 1 + (1 | region/study),
family = binomial("logit"))

bprior_AS_region <- prior(normal(0, 2), class="Intercept") +
prior(normal(0, 0.5), class="sd", coef="Intercept",

group="region") +
prior(normal(0, 0.25), class="sd", coef="Intercept",

group="region:study")

fit_AS_region <- brm(
form_AS_region, data = AS_region,
prior = bprior_AS_region, seed = 2341

)
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Deriving MAP Priors: Summary

summary(fit_AS_region)

Family: binomial
Links: mu = logit

Formula: r | trials(n) ~ 1 + (1 | region/study)
Data: AS_region (Number of observations: 8)

Group-Level Effects:
~region (Number of levels: 3)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.22 0.19 0.01 0.71 1.00 1373 1434

~region:study (Number of levels: 8)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.26 0.13 0.02 0.54 1.00 1382 1084

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -1.09 0.22 -1.55 -0.64 1.00 1231 1021
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Deriving MAP Priors: Extract MAP MCMC
samples

AS_region_new <- data.frame(study = "new_study_asia",
n = 1, region = "asia")

pe_region <- posterior_epred(
fit_AS_region, newdata = AS_region_new,
allow_new_levels = TRUE,
sample_new_levels = "gaussian"

)
posterior_summary(pe_region)

Estimate Est.Error Q2.5 Q97.5
[1,] 0.2504935 0.0680455 0.1284533 0.4141241
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Deriving MAP Priors: Obtain Parametric MAP
Prior
pe_mix_region <-
RBesT::automixfit(pe_region[, 1], type = "beta")

plot(pe_mix_region)$mix
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Leveraging historical control data: summary

Bayesian random-effects meta-analysis models can be used to
derive Meta-Analytic-Predictive (MAP) priors

• Predictions for the mean in a new study inform the MAP prior
Specification of and inference for these models is simple in
brms
Including new-study predictions
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Hands-on exercises: historical control data
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Posit Cloud link

Link to join our Posit Cloud space (shared RStudio workspace):

Link
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https://posit.cloud/spaces/513727/join?access_code=yNGgqsQKAw3UXk6TVZ7z0LPpMNG_IkMpZgNrb6_m


Step-by-step instructions for access

1. (Create an account and) log in to Posit Cloud at the link
2. Agree to join the space
3. Once in the space, go to “Content”
4. Open the “brms-jsm2024” workspace
5. From the “Files” tab in the bottom right, open

“exercises/ex1_historical_controls.qmd”
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Step 1: Log in
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Step 2: Join space
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Step 3: Click content
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Step 4: Open the brms-jsm2024 workspace
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Step 5: Open
exercises/ex1_historical_controls.qmd
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Bayesian statistics in drug development

45 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



 Motivation

  Bayesian thinking

 Recent regulatory perspective
• FDA Complex innovative designs
• FDA Bayesian Supplementary Analysis
• EMA Methodology Working Party Plan

 Industry applications
• Proof of concept studies
• Bayesian decision rules
• Portfolio assessment via probability of success

Bayesian Statistics in Drug Development
Current landscape

46 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



 Health authorities
Should a drug be approved? Or marketing authorization withdrawn? 

 Reimbursement agencies
Should a drug be reimbursed – is it cost effective?

 Medical societies
Should screening be done and how?

 Pharmaceutical companies
Should drug development be continued?

 Health organizations
Should specific food be declared cancer-causing?

Motivation
Important decisions in medicine
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 Decisions in medicine may have far reaching 
consequences 
Patients, medical doctors, payers, pharmaceutical companies, society

 Decisions should be
• Clear
• Transparent
• Evidence based

 Evidence from various sources have to be considered
• Clinical studies
• Observational studies
• Preclinical experiments

Motivation
Important decisions in medicine
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 Clinical trials are often the key source of information

 A typical randomized clinical trial (RCT)
• Participating patients either receive test or control treatment 
• At the end of the trial, the effects of test vs control are compared
• Trials are often double-blind, i.e. neither the patient nor the medical 

doctor knows whether the patient received test or control

 Available information
• Summary information on trial results are typically published in clinical 

journals, or elsewhere, e.g. at ClinicalTrials.gov
• Individual patient data usually not publicly available

Sources of Information
Clinical trials
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 “The explicit quantitative use of external evidence in the design, 
monitoring, analysis, interpretation and reporting of a health-care 
evaluation” (Spiegelhalter et al.; 2004) 

  “...The Bayesian view is well suited to this task because it provides a 
theoretical basis for learning from experience; that is, for updating 
prior beliefs in the light of new evidence. 

 “I am using the term Bayesian here to describe a point of view, and 
not a particular statistical method involving use of a prior probability 
distribution when analysing data. ...”

 “...prior knowledge (i.e., validated scientific theory) is to be 
incorporated into the analysis of current data, and thereby be updated. 
Prior knowledge can be introduced, as I stress here, through the 
assumption of mechanistic scientific models for the data,...”  (Adapted 
from Learn and Confirm Sheiner;1997 )

Bayesian Thinking in Healthcare Evaluation
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Challenges to using Bayes in Drug Development
 Using Bayes in practice is easier said than done

• Deciding on the relevance of different sources of information is subjective and 
requires scientific expertise

• Bayesian thinking usually require a much greater level of engagement and 
resource 

• How to link together relevant evidence and form realistic complex Bayesian 
models (subjective, requires technical expertise)

 Traditionally strong emphasis placed on bias and (strict) type 
one error control  leads to
• Inference based on one or two pieces of evidence (e.g. confirmatory clinical 

trials) that are the most rigorous and relevant 
• Being more descriptive and qualitative when assessing other evidence 
• Use of simple methods that focus on population average effects try to avoid 

models and assumptions
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Enabling Bayesian methods with a Structured Framework

 Bayesian statistics often requires a structured framework 
to be used in practice

Without a structure it is difficult to convince people you are 
synthesizing evidence appropriately
• In Europe, Bayesian methods have been widely used in health 

technology assessment. However, the backbone of this is a careful 
systematic review 

• CDRH/ CBER Bayesian guidance on the Use of Bayesian Statistics 
in Medical Device Clinical Trials has greatly helped to provide a 
structure
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 Enhancing regulatory decision tools to support drug 
development and review

 Complex Innovative Trial Designs (CIDs)

 Includes designs involving complex adaptations, Bayesian 
methods, or other features requiring simulations to 
determine statistical properties 

 Uses of CIDs
• Leverage data 
• Rare diseases 
• Multiple body sites in anti-infective drug development 
•  Assess multiple interventions, diseases, and/or subgroups under a master 

protocol 

Prescription Drug User Fee Act VII(PDUFA VII)
Complex Innovative Designs
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 FDA considers the following trial design features to be innovative: 
• Use of an active-controlled non-inferiority design that has not been previously used 

in this setting 

• Borrowing information from historical studies to increase the study power and 
increase the probability of stopping the trial at the interim analysis 

• Model-based extrapolation from adults to the pediatric population  

 Potential Benefits of Design: 
• The proposed non-inferiority trial uses an FDA-approved effective comparator, which 

can be appealing to patients and their families and can improve recruitment and 
retention. 

• The Bayesian framework allows for the incorporation of prior knowledge and can 
make the trial more efficient.  

• Historical information is incorporated using RMAP priors with a 2-component normal 
distribution and a robust non-informative component which may mitigate the risk of 
borrowing patient data that is not compatible with that observed in the proposed trial. 

Pediatric Multiple Sclerosis: Bayesian CID
Example posted on FDA website
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 FDA has a commitment under the PDUFA VII agreement to publish 
draft Guidance on the Use of Bayesian Methodology in Clinical Trials 
of Drugs and Biologics by September 30, 2025 

CDER Center for Clinical Trial Innovation (C3TI) 

 C3TI aims to increase experience in Bayesian statistical methods in 
simple trial settings across sponsors, CDER clinical reviewers, and 
CDER statisticians, including deepening an understanding of their 
applicability, opportunities, and challenges. 

 With this demonstration project, C3TI will partner with sponsors to use 
Bayesian methods in supplementary analyses during their trial, 
providing an opportunity for both CDER and sponsors to learn new 
methods without impacting review criteria.

Bayesian Supplementary Analysis
FDA Center for Drug Evaluation and Research
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Example Bayesian Statistical
Plans Posted on FDA Website

Parallel-Group Trial 
with a Continuous 
Outcome

A double-blind trial to assess a drug’s effectiveness in lowering acute 
hypertension in an emergency department setting, utilizing Bayesian analysis 
to leverage prior medical knowledge and focusing on 2-hour blood pressure 
reduction. 

Supplemental Bayesian 
Analysis: Unification of 
Evidence

A double-blind trial with multiple endpoints. A Bayesian approach lets 
researchers clearly define the specific condition that would change clinical 
practice and then calculate the likelihood of that condition being met. This 
condition can be a combination of multiple factors.

Bayesian Subgroup Analysis: 
Sharing of Information Across 
Subgroups

This example illustrates how a Bayesian hierarchical model could be used to 
simultaneously determine estimated treatment effects (via hazard ratios) 
across four regions for a time-to-event endpoint. Data from all four regions 
are used in estimating each region-specific hazard ratio.

56 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



 Across the clinical research landscape, how trials are 
conducted is also changing with an increasing number of 
proposals utilising tools such as master protocols and 
Bayesian methods. 

 There is a  need for new guidance in these areas to 
ensure these novel approaches meet the required 
evidentiary standards and facilitate their evaluation. 

 This will aid their integration into our established system 
for benefit-risk assessment, balancing innovation with 
stringent safety and efficacy criteria. 

EMA: Methodology Working Party (MWP)
Clinical Trial Modernisation revised 3-year work plan 
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Bayesian proof of concept trial
Historical control prior

Meta Analysis of Historical Data Study Analysis
Observed Control Response 

Rates

Historical 
Trial 1

Historical 
Trial 2

Historical 
Trial 3

Historical 
Trial 4

Historical 
Trial 5

Historical 
Trial 6

Historical 
Trial 7

Historical 
Trial 8

Meta-
Analysis

Predictive 
Distribution 
of Control 
Response 
Rate in a 

New Study

Bayesian 
Analysis

Observed 
Control 

data

Observed 
Drug
data

Prior 
Distribution 
of Control 
Response 

Rate

Prior 
Distribution 

of drug 
response 

rate

Placebo Drug

Posterior Distribution of 
Difference in Response

Posterior Distribution of 
Control Response Rate

Posterior Distribution of 
Drug Response Rate
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Example Ankylosing Spondylitis Study
Application in of using historical control data in a Proof-of-Concept Study

 Disease
Ankylosing spondylitis

 Experimental treatment 
Monoclonal antibody

 Endpoint 
Binary: response at week 6

 Traditional clinical trial design
• Experimental (n=24) vs. Placebo (n=24)
• Fisher’s exact test

However: 8 similar historical placebo-controlled clinical trials 
with different experimental treatments available
Could this historical placebo information be used? 
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Historical Controls
Motivating example: Trial design and analysis with historical controls

Historical placebo information
• Bayesian primary analysis

• Prior Placebo Derived from 8 historical trials (N=533), using
a Meta-Analytic-Predictive (MAP) approach

Beta(11,32)    worth  43=11+32 patients 

• Prior Experimental Weakly informative

Beta(0.5,1)    worth  1.5=0.5+1 patients

• Design: 
Treatment (n=24) vs. Placebo (n=6)

• Results:
14/24 Treatment  vs. 1/6 Placebo,   p(δ >0 | Data) > 99.8%

Baeten et al. (2013) Lancet 382(9906):1705-1713
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Treatment vs. Control

p(δ > MAD | data) >  97.5%
p(δ > TD | data) >  50%

indeterminate:
neither STOP nor GO

p(δ < MAD | data) >  50%
p(δ < TD | data) >  80%

Decision rules based on Posterior Probability
Double criterion - minimal acceptable difference target difference

δ
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Utilization in a Quick kill Quick win PoC Design
Assessing the design using Frequentist Operating Characteristics

With pPlacebo = 0.15, 10000 runs

Scenario

First interim Second interim Final Overall 
power

Stop for 
efficacy

Stop for 
futility

Stop for 
efficacy

Stop for 
futility

Claim 
efficacy

Fail

∂ =    0 1.6% 49.0% 1.4% 26.0% 0.2% 21.9% 3.2%

∂ = 0.2 33.9% 5.1% 27.7% 3.0% 8.8% 21.6% 70.4%

∂ = 0.5 96.0% 0.0% 4.0% 0.0% 0.0% 0.0% 100.0%

1st Interim

... ≥ 90%

2nd Interim

... ≥ 90%

Final analysis

... > 50%

Negative PoC if 
P(∂ < 0.2)...

... ≥ 70% ... ≥ 50% ... ≥ 50%
Positive PoC if 

P(∂ ≥ 0.2)...

With N=60, 2:1 Active:Placebo, IA’s after 20 and 40 patients
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Drug Development: Probability of Success

Incorporates background 
information on historical 
‘benchmark’ rates of 
success amongst drugs 
sharing a similar 
mechanism of action
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Within some companies Bayesian methods are widely 
used for internal decision making (e.g., PoS) 

 Frameworks, such as CDRH guidance and UK NICE 
approach to HTA assessment,  have helped move 
Bayesian methods into regulatory decision making

 Recent development by the FDA and EMA have 
encouraged greater use of Bayesian approaches in drug 
development

 Bayesian thinking is more important than Bayesian 
statistics

Outlook
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Priors
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 Introduction

 Priors in brms

 Discussion on ‘weakly informative priors’
• Dangers of failing to account for background/context

 Strategies for hierarchical models

 Making use of Empirical Evidence

 Summary

 Additional resources

Priors
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Within the Bayesian regression modeling priors are 
required to perform inference

 This is often seen as a contentious aspect with concerns 
such as:
• “Priors are inherently subjective” 
• “Priors bias your analysis” 
•  “I have no idea how to set appropriate priors”

Introduction
Concerns around priors
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 Priors can also be viewed as a strength providing flexibility to:
• Make a-priori implausible values unlikely (weakly informative priors)
• Incorporate specific expert information into the model (“subjective” priors)
• Incorporate Empirical Evidence into the model
• Mimic frequentist methods (uninformative/“objective” priors)
• Regularize the model to avoid overfitting (shrinkage/sparsifying priors)
• Facilitate convergence
• ...

 In many cases the posterior is dominated by the data, which 
means that the likelihood term 𝑝𝑝(𝑦𝑦|𝜃𝜃) is much larger than the 
prior term 𝑝𝑝(𝜃𝜃)

 This is the default strategy used in brms

Introduction
Potential positive aspects of priors
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 To just get started with brms one may choose to not specify priors 
when calling brm. 

 Doing so will let brms provide in most cases reasonable default priors.

 These default priors are intended to avoid any influence on the 
calculated posterior. 

 The results are fully data driven and will be very close to the 
respective Frequentist maximum likelihood inference result

 However, the default prior is not guaranteed to stay stable between 
releases and can thus change whenever the brms version changes.

 Given that any Bayesian analysis requires a prior, we recommend to 
always explicitly define these - even if these just repeat the default 
prior from brms, which one can easily obtain. 

Priors brms
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 Respecting boundaries
• Use hard bounds in priors exactly where parameters have natural 

bounds

 Expressiveness
•  Use prior families flexible enough to express different plausible prior 

knowledge

 Scale awareness
•  Ensure that priors take the scales of parameters into account

 Data Informed
•  Use previous data to inform the current priors

Priors brms
Further tips
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 In many cases the posterior is dominated by the data, which means 
that the likelihood term 𝑝𝑝(𝑦𝑦|𝜃𝜃) is much larger than the prior term 𝑝𝑝(𝜃𝜃)

Weakly informative/ default priors
Bayesian v Classical inference
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 Bayesian inference leads to a final model that is fully 
probabilistic

 Conclusions based on probability are potentially much 
stronger than conclusions based on hypothesis testing or 
confidence intervals

 For example, in the context of a randomized control trial
• A low p-value would indicate that the result is unlikely if the true 

treatment effect is 0 or a treatment effect of 0 is incompatible with the 
trial data

• A high posterior probability that the treatment effect is positive allows 
the conclusion there is a high chance the treatment works

Bayesian v Classical inference
Critical differences in interpretation: Randomized control trial example
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 Can Bayesian inference with weak priors be used to reach stronger 
conclusion (e.g., the treatment is efficacious)

 One risk with such an approach is that a crucial piece of evidence or 
context is missed when assuming weak prior 

 For example, if the disease area is known to have a very low drug 
development success rate

 Priors which incorporating this background could be developed to 
allow a full probabilistic interpretation and a level of consistency when 
assessing evidence.  

 This approach has been used to support quantitative decision making 
in drug development (Hampson et al., 2022)

Randomized control trial example
Dangers of weakly informative priors

73 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



Specific model
Yi   ~   Binomial( Ni , πi )
   

logit( πi ) =  θ i  +  xi β

Study i, Yi = number of events, Ni = 
number of patients, πi = event rate

• θ i ~ N(μ, τ2): random study 
effect 

• xi : design matrix (Study level 
covariates)

Directed acyclic graphical 
model

Hierarchical Models General Structure
E.g., Random effects logistic regression model

YH

τ

β 

μ 

θi

yi xi

ni
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Hierarchical Models
Example Historical trial data

To use this data as historical control a random 
intercept model is used, which casts this into 
a meta-analytic model
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 Basic hierarchical model
• θ* , θ1 , ..., θJ  | μ, σ2  ~ N( μ, τ2)
• priors p(μ, σ) = p(μ) p(τ ) 

 Population mean μ
Well informed by data, hence very vague prior can be used, e.g. Normal 
distribution with very large variance 

 Between-trial standard deviation τ
• Inference sensitive to prior choice if few trials available
• Use of weakly informative prior recommended, which place most probability 

mass on plausible values of τ
• Spiegelhalter, Abrams, Myles (2004), Gelman (2006) Bayesian Analysis

Priors for the Basic Hierarchical Model
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 The key parameter in this model is the between-trial 
heterogeneity parameter

 If there are few studies/ groups (less than 5, say), many 
«default» priors for standard deviations/variances are not 
appropriate:
e.g. Inverse-gamma(0.001,0.001), uniform(0,1000), ...  

 Half-Normal
• HN(s2) is N(0, s2) truncated at 0
• Scale s should be chosen such that most probability mass placed on 

plausible values of τ
• Plausible range for τ depends on endpoint and context
• This distribution of a half-normal density has been studied extensively in the 

literature and found to be a robust choice in a wide range of problems. 

Priors for τ 
Priors for the between-trial standard deviation
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• Empirical priors study for HTA treatment effect evaluation 
by the German IQWIG (Lilienthal et al. 2023)

• Empirical priors for meta-analyses organized in disease 
specific manner (Turner et al. 2015)

• Endpoint specific considerations for between-trial 
heterogeneity parameter priors in random effect meta-
analyses (Röver et al. 2021)

Making use of Empirical Evidence: Hierarchical Model
Bayesian meta-analysis for Health technology assessment
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Y= 𝐸𝐸0 + 𝐸𝐸𝒎𝒎𝒎𝒎𝒎𝒎𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
ℎ

𝐸𝐸𝐸𝐸50
ℎ +𝑑𝑑𝒐𝒐𝒐𝒐𝒐𝒐ℎ

 dose is the treatment group dose

 E0= response under placebo 
treatment

 Emax = maximum difference with 
PBO

 ED50 = dose producing half the 
maximum response

 The power parameter ℎ determines 
the steepness of the curve

Making use of Empirical Evidence: Non-Linear models
Bayesian model-based dose response

• Empirically-based prior 
distribution combining dose 
response meta-data and 
compound-specific information

• Priors developed for key non-
linear parameters ED50, ℎ

FDA Fit for purpose Integrated review
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 Bayesian inference with priors provides inference leading 
to a fully probabilistic model

 This potentially leads to very clear interpretation based on 
probability statements

While the default priors in brms provide a good starting 
point for many modeling problems:
• Need to be aware of dangers of missing important background/ 

context that should be incorporated into a prior
• More care and subtlety is often needed in more complex models 

(e.g., hierarchical models and non-linear models)
• Think about scales, boundaries and plausible range
• Where possible consider empirical evidence

Summary
Priors
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• Comprehensive introductory book to applied Bayesian data analysis with 
detailed discussion on many examples (Gelman et al. 2014)

• Live wiki document maintained by Stan user community (heavily influenced by 
Andrew Gelman & Aki Vehtari) (Stan 2024)

• Prior strategy based on nested modeling considerations (penalization of more 
complex models), (Simpson et al. 2014)

• Global model shrinkage regularized horseshoe prior (Piironen and Vehtari
2017) or R2D2 prior (overall 𝑅𝑅2) (Zhang et al. 2022)

Additional literature for consideration
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Case study 2: Bayesian Mixed Models for
Repeated Measures (MMRM)
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Example study

Hypothetical dose findng study (N=200 randomized patients)
Continuous outcome measured for each patient at baseline, as
well as weeks 2, 4, 8 and 12
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Overview and Analysis Goals

Mixed Effects Model for Repeated Measures (MMRM) commonly
used for longitudinal data (each patient measured at multiple visits)
Direct likelihood analysis that can address hypothetical estimand of
all patients completing the study on treatment without doing
missing data imputation first
Commonly no structure assumed for correlations between visits and
different variance allowed for different visits (to avoid unnecessary
assumptions)
Convergence issues with REML fit common, especially for small
sample sizes, which is alleviated by Bayesian inference with
(weakly-)informative priors
Bayes allows us to incorporate prior information and historical data,
which is very interesting for Phase I studies
brms lets us easily add more components & structure to the model
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What do our data look like?
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Analysis Data Model (ADaM) Basic Data
Structure (BDS)

USUBJID TRT01P AVISIT ADY AVAL CHG BASE
3 10 visit1 14 1.32 0.54 0.78
3 10 visit2 28 1.30 0.52 0.78
3 10 visit3 56 −0.24 −1.02 0.78
3 10 visit4 84 1.40 0.63 0.78
9 20 visit1 14 0.98 0.87 0.11
9 20 visit2 28 1.54 1.44 0.11
9 20 visit3 56 −0.86 −0.97 0.11
9 20 visit4 84 1.33 1.22 0.11
13 10 visit1 14 2.35 0.45 1.90
13 10 visit2 28 2.04 0.14 1.90
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Model Specification: Informal

A widely used default analysis is to have the following fixed effects:

visit as a factor
treatment as a factor
treatment by visit interaction
baseline (pre-treatment) value of the continuous endpoint as a
continuous covariate
visit by baseline value interaction

And the following random effects:

Random subject effect on the visit main effect or equivalently
correlated residual error terms within subjects
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Model Specification: Formal
Formally, let us assume that there are 𝑉 visits. We usually assume
that the 𝑉 -dimensional response 𝑌 𝑖 for patient 𝑖 satisfies

𝑌 𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖

with 𝑏𝑖 ∼ MVN(0, 𝐷) and 𝜖𝑖 ∼ MVN(0, Σ), where Σ is a diagonal
matrix. This implies

𝑌 𝑖 ∼ MVN(𝑋𝑖𝛽, 𝑉 𝑖),

where 𝑉 𝑖 = 𝑍𝑖𝐷𝑍𝑇
𝑖 + Σ. Model the correlated 𝑌𝑖𝑗 either by

1. marginalizing out random effects & account for them with
correlated residual errors (residual covariance matrix 𝑉𝑖), or

2. conditionally on (V-dimensional) random effects 𝑏𝑖 with
residual errors 𝜖𝑖 independent (once we condition on 𝑏𝑖).
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MMRMs in SAS

Widely-used high-quality reference implementation
PROC MIXED DATA=simulated_data;

CLASS TRT01P AVISIT USUBJID;
MODEL CHG ~ TRT01P AVISIT BASE TRT01P*AVISIT AVISIT*BASE

/ SOLUTION DDFM=KR ALPHA = 0.05;
REPEATED AVISIT / TYPE=UN SUBJECT = USUBJID R Rcorr GROUP=TRT01P;
LSMEANS TRT01P*AVISIT / DIFFS PDIFF CL OM E;

RUN;
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MMRMs with the mmrm R package

Fit the model in R in a frequentist framework
library(mmrm)
mmrm_fit <- mmrm(
formula = CHG ~ TRT01P + AVISIT + BASE + AVISIT:TRT01P +
AVISIT:BASE + us(AVISIT | TRT01P / USUBJID),

method = "Kenward-Roger",
vcov = "Kenward-Roger-Linear", # to match SAS
data = simulated_data %>% mutate(USUBJID=factor(USUBJID))

)

90 | BAMDD JSM 2024 | Ohlssen, Bean, Holzhauer | 2024-08-05 | Public NOVARTIS 



Forward Difference Parametrization: Motivation

We would like to put priors on the differences from visit to visit
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Difference contrasts

Setup forward difference contrasts for changes between visits:
contrasts(simulated_data$AVISIT) <- MASS::contr.sdif

Hard to interpret the contrast matrix directly:

visit2-visit1 visit3-visit2 visit4-visit3
visit1 -3/4 -1/2 -1/4
visit2 1/4 -1/2 -1/4
visit3 1/4 1/2 -1/4
visit4 1/4 1/2 3/4

Learn more about contrasts:
https://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf
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What do these contrasts mean?

Inverting the contrast matrix reveals the dummy variables’
interpretation:
# add the intercept
cmat <- cbind("1" = 1, contrasts(simulated_data$AVISIT))
# compute the inverse matrix
solve(cmat) %>% MASS::fractions()

visit1 visit2 visit3 visit4
1 1/4 1/4 1/4 1/4
visit2-visit1 -1 1 0 0
visit3-visit2 0 -1 1 0
visit4-visit3 0 0 -1 1
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MMRMs in brms
mmrm_model1 <- bf(

CHG ~ 1 + AVISIT + BASE + BASE:AVISIT + TRT01P + TRT01P:AVISIT
+ unstr(time = AVISIT, gr = USUBJID),

sigma ~ 1 + AVISIT + TRT01P + AVISIT:TRT01P
)

mmrm_prior1 <- prior(normal(0, 2), class=Intercept) +
prior(normal(0, 1), class=b) +
prior(normal(0, log(10.0)/1.64), class=Intercept, dpar=sigma) +
prior(normal(0, log(2.0)/1.64), class=b, dpar=sigma) +
prior(lkj(1), class=cortime)

fit_mmrm1 <- brm(
formula = mmrm_model1,
data = simulated_data,
prior = mmrm_prior1,
...

)
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MMRMs in brms
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MMRMs in brms
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Expected marginal (least-squares) means
emm2 <- fit_mmrm1 %>%

emmeans(~ TRT01P | AVISIT, weights="proportional")

AVISIT = visit1:
TRT01P emmean lower.HPD upper.HPD
0 -0.1575 -0.3563 0.0414
10 -0.0314 -0.2328 0.1611
20 -0.1613 -0.3849 0.0460
40 0.0543 -0.1353 0.2295

AVISIT = visit4:
TRT01P emmean lower.HPD upper.HPD
0 -0.3686 -0.6177 -0.0983
10 0.2235 -0.0548 0.4952
20 0.4040 0.1764 0.6199
40 0.3541 0.0173 0.6954

Point estimate displayed: median
HPD interval probability: 0.95

With emm2 %>% as.mcmc() %>% summarize_draws() we can work
with MCMC samples of the expected marginal means & to summarize
them exactly as we want (e.g. quantile credible intervals)
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Expected Marginal Contrasts per Visit
contrast(emm2, adjust="none", method="trt.vs.ctrl", ref="TRT01P0")

AVISIT = visit1:
contrast estimate lower.HPD upper.HPD
TRT01P10 - TRT01P0 0.12727 -0.1700 0.394
TRT01P20 - TRT01P0 -0.00262 -0.3027 0.283
TRT01P40 - TRT01P0 0.20851 -0.0692 0.465

AVISIT = visit4:
contrast estimate lower.HPD upper.HPD
TRT01P10 - TRT01P0 0.59344 0.2103 0.971
TRT01P20 - TRT01P0 0.77371 0.4205 1.104
TRT01P40 - TRT01P0 0.72327 0.3095 1.149

Point estimate displayed: median
HPD interval probability: 0.95

as.mcmc() to work with MCMC samples of the difference
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Monotonic Effects Across Ordered Factor Levels
mmrm_model2 <- bf(

CHG ~ 1 + AVISIT + mo(TRT01P) + BASE + mo(TRT01P):AVISIT
+ BASE:AVISIT + unstr(time = AVISIT, gr = USUBJID),

sigma ~1 + AVISIT + mo(TRT01P) + mo(TRT01P):AVISIT
)

For category 𝑐 = 0, … , (categories − 1), the monotonic term is

coefficient × (categories − 1) ×
𝑐

∑
𝑘=1

𝜁𝑘,

where 𝜁𝑘 ∈ [0, 1] and ∑categories−1
𝑘=1 𝜁𝑘 = 1. For more details see this vignette:

https://paul-buerkner.github.io/brms/articles/brms_monotonic.html
fit_mmrm2 <- brm(

formula = mmrm_model2,
data = simulated_data %>% mutate(TRT01P=ordered(TRT01P)),
prior = mmrm_prior1,
...)
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Results from different MMRMs
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MMRMs: Outlook

In the case study on http://opensource.nibr.com/bamdd you
additionally find:

Data and full code
More on estimands, parametrization, contrasts & setting priors
Estimating average differences across visits
Meta-analytic combined (MAC) approach using historical data
Robustifying MAC via a “slab-and-spike”-type prior
Non-linear functions over time & doses in MMRMs
Excercises
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Case study 3: Dose finding
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Typical dose response shapes
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Typical dose response shapes
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Typical dose response shapes
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Data Set PATHWAY

Placebo controlled trial
Treatment of severe asthma with tezepelumab
Three different doses + placebo
Endpoint: annualized rate of asthma exacerbations
Estimates per arm from negative binomial regression (like in
“arm-based meta-analysis”), not individual patient data

dose group log_est log_stderr
0 placebo −0.400 0.103

70 tezepelumab 70 mg q4w −1.347 0.177
210 tezepelumab 210 mg q4w −1.661 0.222
560 tezepelumab 280 mg q2w −1.514 0.191
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Sigmoid Emax Model

𝑓(dose; parameters) = E0 + Emax × doseℎ

doseℎ + EDℎ
50

Parameters:

E0 ∈ ℝ: Expected placebo outcome
Emax ∈ ℝ: Maximum effect size
ℎ ∈ ℝ+: Hill (steepness) parameter
ED50: Dose at which 50% of Emax is reached
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Sigmoid Emax Model: Visualization
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Specifying sigmoid Emax Model with brms

form_sig <- bf(
log_est | se(log_stderr) ~ E0 + Emax * dose^h /

(dose^h + ED50^h),
nlf(h ~ exp(logh)), nlf(ED50 ~ exp(logED50)),
E0 ~ 1, Emax ~ 1, logh ~ 1, logED50 ~ 1,
nl = TRUE,
family = gaussian()

)

prior_sig <- prior(normal(0,1), nlpar="E0") +
prior(normal(0,1), nlpar="logh") +
prior(normal(0,1), nlpar="Emax") +
prior(normal(4,2), nlpar="logED50")
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Fitting the sigmoid Emax Model with brms

fit_sig = brm(
formula = form_sig,
data = pathway,
prior = prior_sig,
control = list(adapt_delta = 0.999)

)
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Sigmoid Emax Model: Results Summary

summary(fit_sig)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: log_est | se(log_stderr) ~ E0 + Emax * dose^h/(dose^h + ED50^h)
h ~ exp(logh)
ED50 ~ exp(logED50)
E0 ~ 1
Emax ~ 1
logh ~ 1
logED50 ~ 1

Data: pathway (Number of observations: 4)

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

E0_Intercept -0.42 0.10 -0.61 -0.21 1.00 2065 2179
Emax_Intercept -1.30 0.32 -2.11 -0.84 1.00 1172 1199
logh_Intercept -0.08 0.98 -1.90 1.92 1.00 1306 1914
logED50_Intercept 2.73 1.38 -0.27 5.32 1.00 1341 1273

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.00 0.00 0.00 0.00 NA NA NA
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Visualizing the Fitted Sigmoid Emax Model
tibble(dose = seq(0, 560, 1), log_stderr=1) %>%

add_epred_rvars(object=fit_sig) %>%
(\(x) x %>%

left_join(x %>% filter(dose==0) %>% rename(pbo = .epred) %>% dplyr::select(-dose),
by="log_stderr"))() %>%

mutate(.delta = .epred - pbo) %>%
ggplot(aes(x=dose, ydist=.delta)) +
stat_lineribbon()
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Modified Beta Model

𝑓(dose; parameters) = E0+Emax
(𝛿1 + 𝛿2)(𝛿1+𝛿2)

𝛿𝛿1
1 𝛿𝛿2

2
(dose

𝑆 )𝛿1∗(1−dose
𝑆 )𝛿2

Parameters:

E0 ∈ ℝ: Expected placebo response
Emax ∈ ℝ: Maximum effect size
𝛿1, 𝛿2 ∈ ℝ+: Shape parameters
𝑆: constant > maximum dose, e.g. 1.5 × max(dose), here we
choose S=850
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Specifying the Modified Beta Model with brms

form_mbeta <- bf(
log_est | se(log_stderr) ~ E0 +
Emax * (delta1+delta2)^(delta1+delta2) /
(delta1^delta1 * delta2^delta2) *
(dose/850)^delta1 * (1-dose/850)^delta2,

nlf(delta1 ~ exp(logdelta1)), nlf(delta2 ~ exp(logdelta2)),
E0 ~ 1, Emax ~ 1, logdelta1 ~ 1, logdelta2 ~ 1,
nl = TRUE,
family = gaussian()

)

prior_mbeta <- prior(normal(0,1), nlpar="E0") +
prior(normal(0,1), nlpar="Emax") +
prior(normal(0,1), nlpar="logdelta1") +
prior(normal(0,1), nlpar="logdelta2")
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Fitting the Modified Beta Model with brms

fit_mbeta <- brm(
form_mbeta,
data = pathway,
prior = prior_mbeta,
control = list(adapt_delta = 0.999)

)
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Visualizing the Fitted Modified Beta Model
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Model Evaluation (failed attempt)
(loo_mbeta <- loo(fit_mbeta))

Computed from 4000 by 4 log-likelihood matrix

Estimate SE
elpd_loo 0.1 0.4
p_loo 2.2 0.6
looic -0.2 0.7
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 1 25.0% 1282
(0.5, 0.7] (ok) 0 0.0% <NA>
(0.7, 1] (bad) 3 75.0% 25
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.

Same problem for sigmoid Emax model (loo(fit_sig))
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Model Evaluation (failed attempt #2)
(loo_mm_mbeta <- loo_moment_match(fit_mbeta, loo_mbeta))

Computed from 4000 by 4 log-likelihood matrix

Estimate SE
elpd_loo -0.1 0.5
p_loo 2.0 0.6
looic 0.1 1.0
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 2 50.0% 418
(0.5, 0.7] (ok) 1 25.0% 200
(0.7, 1] (bad) 1 25.0% 26
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.

Worked for sigmoid Emax model (loo_moment_match(fit_sig, loo(fit_sig)))
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Model Evaluation (works)

(loo_exact_mbeta <- kfold(fit_mbeta, folds = "loo"))

Based on 4-fold cross-validation

Estimate SE
elpd_kfold -2.0 1.6
p_kfold 4.3 2.1
kfoldic 4.0 3.1
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Model Comparison

loo_compare(loo_mm_sig, loo_exact_mbeta)

elpd_diff se_diff
fit_sig 0.0 0.0
fit_mbeta -3.0 1.8

fit_sig$criteria$loo <- loo_mm_sig
fit_mbeta$criteria$loo <- loo_exact_mbeta
(w_dose <- model_weights(fit_sig, fit_mbeta, weights = "loo"))

fit_sig fit_mbeta
0.95474875 0.04525125
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Bayesian Model Averaging

pe_sig <- posterior_epred(fit_sig, newdata = dose_df)
pe_mbeta <- posterior_epred(fit_mbeta, newdata = dose_df)
pe_avg <- pe_sig * w_dose[1] + pe_mbeta * w_dose[2]

pe_avg <- pe_avg %>%
posterior_summary() %>%
as.data.frame() %>%
bind_cols(dose_df)

Estimate Est.Error Q2.5 Q97.5 dose
1 -0.4155670 0.09671043 -0.5997071 -0.2250888 0.000000
2 -0.8377918 0.29297796 -1.4016708 -0.3511670 5.656566
3 -0.9668007 0.29058028 -1.4621438 -0.4051060 11.313131
4 -1.0534117 0.27577332 -1.4997970 -0.4525746 16.969697
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Visualizing the Model Averaging
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Hands-on exercises: dose finding
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Guided exercise 2: Open
exercises/ex2_dose_finding.qmd

Access steps are the same as in the first set of exercises, and then
from here, open exercises/ex2_dose_finding.qmd
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Case study 4: Time-to-event data
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Overview and Analysis Goals

Oncology late phase trial to evaluate efficacy of an active drug
given in addition to two similar standard of care (SoC-A and
Soc-B), which vary geographically

A total of 4 trial arms active/control combined with SoC-A /
SoC-B are studied

Analysis needs to account for:
• The efficacy of SoC-A and SoC-B are known to be similar
• Active drug efficacy is expected to be consistent with SoC-A

and SoC-B → interest in average treatment effect

Key analysis goal: Need to control parametrization of model
to reflect prior knowledge on similarity and increase efficiency
in estimating average treatment effect
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Simulated Data Set

First few rows of the simulated dataset:

y event trt soc arm
7.6954096 0 ctl ChA ctlChA
0.0950267 0 act ChA actChA
4.7481606 0 ctl ChA ctlChA
2.7468766 0 act ChA actChA
3.6137101 1 ctl ChA ctlChA
0.9358058 1 act ChA actChA
0.2591939 1 ctl ChA ctlChA
9.2119778 1 act ChA actChA
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Contrasts: Math
Overall mean (intercept):

𝜇 = 1
4(𝜇𝑎𝑐𝑡𝐶ℎ𝐴 + 𝜇𝑐𝑡𝑙𝐶ℎ𝐴 + 𝜇𝑎𝑐𝑡𝐶ℎ𝐵 + 𝜇𝑐𝑡𝑙𝐶ℎ𝐵)

Average difference between the active and control arms:

𝛿𝑎𝑣𝑔.𝑑𝑖𝑓𝑓 = 1
2([𝜇𝑎𝑐𝑡𝐶ℎ𝐴 − 𝜇𝑐𝑡𝑙𝐶ℎ𝐴] + [𝜇𝑎𝑐𝑡𝐶ℎ𝐵 − 𝜇𝑐𝑡𝑙𝐶ℎ𝐵])

Half of the difference in treatment effect between the two SOC:

𝛿𝑒𝑓𝑓𝑒𝑐𝑡 = 1
2([𝜇𝑎𝑐𝑡𝐶ℎ𝐴 − 𝜇𝑐𝑡𝑙𝐶ℎ𝐴] − [𝜇𝑎𝑐𝑡𝐶ℎ𝐵 − 𝜇𝑐𝑡𝑙𝐶ℎ𝐵])

Difference between the two control arms:
𝛿𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = −𝜇𝑐𝑡𝑙𝐶ℎ𝐴 + 𝜇𝑐𝑡𝑙𝐶ℎ𝐵
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Contrasts: Inverse Matrix

First specify the groups as a function of the contrasts:
cc_inv

arm
contrast actChA ctlChA actChB ctlChB

intercept 1/4 1/4 1/4 1/4
effectAvg 1/2 -1/2 1/2 -1/2
deltaEffect 1/2 -1/2 -1/2 1/2
deltaControl 0 -1 0 1
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Contrasts: Contrast Matrix

Then invert the matrix to get the actual contrast matrix:
cc <- solve(cc_inv)

intercept effectAvg deltaEffect deltaControl
actChA 1 1/2 1 -1/2
ctlChA 1 -1/2 0 -1/2
actChB 1 1/2 -1 1/2
ctlChB 1 -1/2 0 1/2
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The Weibull Family in brms

When using family weibull in brms, we are modeling the time
until the event, not the hazard function!

Parameterize as mean 𝜇 and shape 𝛼 such that, with scale
𝑠 = 𝜇/Γ(1 + 1

𝛼):

Weibull(𝑡) = 𝛼
𝑠 ( 𝑡

𝑠)
𝛼−1

exp (− ( 𝑡
𝑠)

𝛼
)

This is an accelerated failure time model since the survivor
function has the property of 𝑆𝑖(𝑡) = 𝑆weibull(𝑡/𝜇𝑖).
When using a log linear model on 𝜇 the regression coefficients
are interpretable as relative speedup/slowdown of the process
progression
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Specify brms Weibull Model

model_weibull1 <- bf(y | cens(1-event) ~ 1 + arm,
family=weibull())

prior_weibull1 <-
prior(normal(meanInter, log(4)/1.64), class="Intercept") +
prior(normal(0, sdEffect), coef=armeffectAvg) +
prior(normal(0, sdDeltaEffect), coef=armdeltaEffect) +
prior(normal(0, sdDeltaControl), coef=armdeltaControl) +
prior(gamma(0.1, 0.1), class=shape)

stanvars_weibull1 <-
stanvar(-log(log(2)/8), name = "meanInter") +
stanvar(log(2)/1.64, name = "sdEffect") +
stanvar(log(1.25)/1.64, name = "sdDeltaEffect") +
stanvar(log(1.25)/1.64, name = "sdDeltaControl")
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Fit brms Weibull Model

fit_weibull1 <- brm(
formula = model_weibull1,
data = sim,
prior = weibull_prior1,
stanvars = stanvars_weibull1,
...

)
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summary(fit_weibull1)

Family: weibull
Links: mu = log; shape = identity

Formula: y | cens(1 - event) ~ 1 + arm
Data: sim (Number of observations: 200)

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 2.16 0.12 1.94 2.42 1.00 3759 2829
armeffectAvg 0.27 0.19 -0.10 0.65 1.00 4386 2915
armdeltaEffect 0.00 0.11 -0.21 0.20 1.00 4763 3006
armdeltaControl 0.06 0.12 -0.17 0.29 1.00 4445 3215

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

shape 0.97 0.08 0.83 1.12 1.00 3514 2838
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Posterior Predictive Checks
p_full_fup <- pp_check(
fit_weibull1, type = "km_overlay",
status_y = sim$event, ndraws = 100

)

The model predictions assume no censoring
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Time-to-Event Modeling: Outlook

In the case study on https://opensource.nibr.com/bamdd you
additionally find:

Additional details and model justification based on a real
dataset
Include historical data of average SoC
Add custom coded contrasts to further improve flexibility of
historical data analysis
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Course wrap-up
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Summary

Diverse opportunities for applied modelling to inform good
drug-development decisions
Bayesian paradigm is well suited for many of these situations

• Availability of meaningful prior information
• Desire for probabilistically interpretable statements about

unknowns and future observable quantities
brms is a powerful and highly flexible engine for applied
modelling , facilitating straightforward model specification and
inference
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Looking ahead

We hope you have:
• Become familiar with brms syntax and workflow
• Seen its versatility for statistical modelling in drug development
• Gained hands-on experience with the package from guided

exercises
And that you feel empowered to use brms the future!
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Resources

Our open-source book: Bayesian Applied Modelling in Drug
Developoment (BAMDD)
brms documentation: https://paul-buerkner.github.io/brms/
Stan homepage: https://mc-stan.org
Stan Forums: https://discourse.mc-stan.org/
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Thank you

Thank you for your interest and participation!
Our contact information:

• David: david.ohlssen [at] novartis [dot] com
• Andrew: andrew.bean [at] novartis [dot] com
• Björn: bjoern.holzhauer [at] novartis [dot] com
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